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Abstract

Novel Class Discovery (NCD) is a growing field where we are given during training a labeled set
of known classes and an unlabeled set of different classes that must be discovered. In recent years,
many methods have been proposed to address this problem, and the field has begun to mature. In
this paper, we provide a comprehensive survey of the state-of-the-art NCD methods. We start by
formally defining the NCD problem and introducing important notions. We then give an overview
of the different families of approaches, organized by the way they transfer knowledge from the
labeled set to the unlabeled set. We find that they either learn in two stages, by first extracting
knowledge from the labeled data only and then applying it to the unlabeled data, or in one stage
by conjointly learning on both sets. For each family, we describe their general principle and detail
a few representative methods. Then, we briefly introduce some new related tasks inspired by the
increasing number of NCD works. We also present some common tools and techniques used in
NCD, such as pseudo labeling, self-supervised learning and contrastive learning. Finally, to help
readers unfamiliar with the NCD problem differentiate it from other closely related domains, we
summarize some of the closest areas of research and discuss their main differences.

Keywords: novel class discovery, unsupervised learning, clustering, transfer learning, open world
learning

1 Introduction

In the past decade of machine learning research, many classification models have relied heavily on the
availability of large amounts of labeled data for all relevant classes. The recent success of these models
is due in part to the abundance of labeled data. However, it is not always possible to have labeled data
for all classes of interest, leading researchers to consider scenarios where unlabeled data is available.
This “open-world” assumption is becoming increasingly more common in practical applications, where
instances outside the initial set of classes may emerge [1]. To illustrate, let’s examine the scenario of
Figure 1. Here, instances from classes never seen during training appear at test time. An ideal model
should not only be able to classify the known classes (parrots and cats), but also to discover the new
ones (tigers and horses).

What is the issue? - In this example, a standard classification model is likely to incorrectly classify
instances that fall outside the known classes as belonging to one of the known classes. This is a well-
known phenomenon of neural networks, where they can produce overconfident incorrect predictions,
even in the case of semantically related inputs [2]. Here, a tiger would be classified as a parrot or a
cat. For this reason, researchers are now exploring scenarios where unlabeled data is also available
[3, 4]. In this survey, we will focus on one such scenario, where a labeled set of known classes and
an unlabeled set of unknown classes are given during training. The goal is to learn to categorize the
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Figure 1: The open-world scenario, where new classes appear during inference.

unlabeled data into the appropriate classes. This is referred to as “Novel Class Discovery (NCD)”1 [5].

What is the usual setup of NCD? - Illustrated in Figure 2, the training data in NCD consists of
two sets of samples: one from known classes and one from unknown classes. The test set is comprised
solely of samples from unknown classes. The NCD scenario belongs to Weakly Supervised Learning
[3, 4], where methods that require all the classes to be known in advance can be distinguished from
those that are able to manage classes that have never appeared during training. As an example,
in Open-World Learning (OWL) [1], methods seek to accurately label samples of classes seen during
training, while identifying samples from unknown classes. However, the methods in OWL are generally
not tasked with clustering the unknown classes and unlabeled data is left unused. Another example is
Zero-Shot Learning (ZSL) [6], where the models are designed to accurately predict classes that have
never appeared during training. But some kind of description of these unknown classes is needed to
be able to recognize them. On the other hand, NCD has recently gained significant attention due to
its practicality and real-world applications.

Figure 2: The Novel Class Discovery scenario, where both labeled data of known classes and unlabeled
data of unknown classes are available during training.

Why does clustering alone fail to produce good results? - Albeit naive, unsupervised clustering
is a direct solution to the NCD problem as it can sometimes be sufficient for discovering classes in
unlabeled data. For example, many clustering methods have obtained an accuracy larger than 90% on
the MNIST dataset [7, 8, 9]. But in the case of complex datasets, the literature shows that clustering
fails [10, 11] compared to more sophisticated approaches. Clustering can fail for many reasons due to
the assumptions that the methods make: spherical clusters, mixture of Gaussian distributions, shape

1In this survey, we use the term “Novel Class Discovery” to refer to the specific domain and not to the act of
discovering novel classes. This name is becoming gradually more popular in the literature, but it can be confusing due
to its general meaning. It is also sometimes called “Novel Category Discovery”.
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of the data, similarity measure, etc. Thus, the partitioning produced could be incoherent with the
data or with the semantic classes; i.e. unsupervised learning is not enough in some cases. We attempt
to illustrate this idea in Figure 3: If the similarity measure used is highly influenced by the color
of images, the clusters that are generated will likely group images based on their dominant color.
Although the clusters formed in this manner will be statistically accurate (with high similarity within
the cluster and low similarity between clusters), the semantic categories will not be revealed.

Figure 3: Example of naive solution that could be found with unsupervised clustering. The images
are grouped by dominant color and not by semantic class such as bird, flower, fish, . . .

As real-world datasets vary widely in nature and the desired clusters can have very different defi-
nitions, it seems impossible to create a clustering algorithm that fits all data types. Therefore, there
is a need for more refined techniques that can extract from known classes a relevant representation of
a class in order to improve the clustering process.

To fill these gaps - the Novel Class Discovery domain has been proposed: it attempts to identify
new classes in unlabeled data by exploiting prior knowledge from known classes. The idea behind NCD
is that by having a set of known classes, a suitable method should be able to improve its performance
by extracting a general concept of what constitutes a good class. This can, for example, take the
form of a specialized similarity function or a latent space containing domain-specific features. It is
assumed that the model does not need to be able to distinguish the known from the unknown classes.
If this assumption is not made, this becomes a Generalized Category Discovery (GCD) [12] problem.
Some solutions have been proposed for the NCD problem in the context of computer vision and have
displayed promising results [13, 14, 15, 16].

In most of the literature, the difficulty of a NCD problem is set by varying the number of
known/unknown classes, and increasing the number of known classes is considered as a way of making
the problem easier. In [17], the authors explore the influence of the semantic similarity between the
classes of the labeled and unlabeled sets. Their assumption is that if the labeled set has a high semantic
similarity to the unlabeled set, the NCD problem will be easier to solve. Intuitively, if the task is to
distinguish different animal species in the unlabeled set, a set of other known animals will be beneficial,
while a set of cars will not. They prove the validity of this assumption through their experiments and
find that a labeled set with low semantic similarity can even have a negative impact on the performance.

Contributions and Organization of this paper - We provide a detailed overview of Novel Class
Discovery and its formulation, as well as its positioning with respect to related domains. We outline
the key components present in most NCD methods, in the form of general workflows and a study of
some representative methods, organized by the way they transfer knowledge from the labeled to the
unlabeled set. Additionally, we situate related works in the context of NCD. The remaining sections of
this paper are organized as follows: Section 2 introduces relevant general knowledge and an overview
of domains related to NCD. Section 3 presents a taxonomy of current NCD methods and describes
some representative methods. Section 4 provides a brief overview of new domains derived from NCD.
Since certain techniques and tools are frequently found in NCD methods, Section 5 offers a concise
description of them. Finally, Section 6 highlights links and differences with related research fields
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before concluding.

2 Preliminaries

Notations Meaning
X the feature space in Rd.
X l/Xu the data samples of the labeled/unlabeled sets.
P (X) the marginal distribution of X.

Y l/Yu the target spaces in RCl

/RCu

.
Cl/Cu the number of classes in the labeled/unlabeled sets.
Y l/Y u the corresponding class labels of X l/Xu.
Dl/Du the labeled/unlabeled data domains, composed of a set of

samples X and their corresponding class labels Y .
N/M the number of samples in Dl/Du.

Table 1: Notations frequently used in this paper and their meanings.

In this section, we introduce some general knowledge useful to understand most of the NCD works.
We start by briefly summarizing the history of NCD in the literature, before giving a formal defini-
tion that follows the widely used mathematical notations of [16] and [18]. Table 1 lists some of the
important notations used throughout this survey. And we present the usual evaluation protocol and
the metrics used in NCD.

A brief history of NCD: The 2018 article of Hsu et al. [5] can be considered the first to solve
the Novel Class Discovery problem. The authors position their work as a transfer learning task where
the labels of the target set are not available and must be inferred. Their methods, KCL [5] and MCL
[19], are still regularly used as competitors in NCD articles. The term “Novel Category Discovery” was
initially used by Han et al. [18] in 2020 and is another popular term to designate the NCD problem.
Building on this work, Zhong et al. defined “Novel Class Discovery” as a new specific setting in 2021
[16].

A formal definition of NCD: During training, the data is provided in two distinct sets, a
labeled set Dl = {(xl

i, y
l
i)}Ni=1 and an unlabeled set Du = {xu

i }Mi=1. Each xl
i ∈ Dl and xu

i ∈ Du are
data instances and yli ∈ Y l = {1, . . . , Cl } are the corresponding class labels of Dl. The goal is to use
both Dl and Du to discover the Cu novel classes, and this is usually done by partitioning Du into Cu

clusters and associating labels yui ∈ Yu = {1, . . . , Cu} to the data in Du.
In the specific setup of NCD, there is no overlap between the classes of Y l and Yu, so we have

Y l ∩ Yu = ∅. We are not concerned with the accuracy on the classes of Dl, this set is only here to
provide a form of knowledge on what constitutes a relevant class. In all the works reviewed in the
paper, the number of novel classes Cu is assumed to be known a priori, although we will see that some
works attempt to estimate this number.

Positioning and key concepts of NCD: Novel Class Discovery is a nascent and young problem
with a setup that can be challenging to differentiate from other fields. To provide an overview of the
domains explored in this paper, we propose Figure 4. By comparing NCD with these related domains
and highlighting the key differences, we aim to offer the reader a clear and comprehensive understand-
ing of the NCD domain. Please refer to Section 6 for further details and discussions. Note that in
Figure 4, the domains are differentiated only by their setup, and while they may be similar, they dot
not solve exactly the same problems. Additionally, Open World Learning is reviewed in Section 6.4
but does not appear in this figure. This is due to its broad definition and the multitude of domains it
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encompasses, which would cause it to appear in several branches of Figure 4.

Figure 4: Overview of the domains related to Novel Class Discovery.

Evaluation protocol and metrics in NCD: To evaluate a NCD method on a given dataset, the
typical procedure [14] is to hold out (or hide) during the training phase a portion of the classes from a
fully labeled dataset to act as novel classes and form the unlabeled dataset Du. For example, in most
articles evaluated on MNIST, the authors consider the first 5 digits as known classes and the last 5 as
novel classes whose labels are not used during training. The performance metrics are only computed
on Du, as NCD is only concerned with the performance on the novel classes.

The primary metric used to evaluate the performance of models in NCD is the clustering accuracy
(ACC). First introduced by [20], it requires to optimally map the predicted labels to the ground-
truth labels, as the cluster numbers won’t necessarily match the class numbers. The mapping can be
obtained with the the Hungarian algorithm [21] (also known as the Kuhn-Munkres algorithm). The
ACC is defined as:

ACC =
1

M

M∑
i=1

1[yui = map(ŷui )] (1)

where map(ŷui ) is the mapping of the predicted label for sample xu
i and M is the number of samples

in the unlabeled set Du.
Another popular metric is the normalized mutual information (NMI). It measures the correspon-

dence between the predicted and ground-truth labels and is invariant to permutations. It is defined
as:

NMI =
I(ŷu, yu)√
H(ŷu)H(yu)

(2)

where I(ŷu, yu) is the mutual information between ŷu and yu and H(yu) and H(ŷu) are the marginal
entropies of the empirical distributions of yu and ŷu respectively.

Both metrics range between 0 and 1, with values closer to 1 indicating a better agreement to the
ground truth labels. Other metrics that can be found in NCD articles include the Balanced Accuracy
(BACC) and the Adjusted Rand Index (ARI). In the case of imbalanced class distribution, the BACC
provides a more representative evaluation of the performance of a model compared to the simple
accuracy. It is calculated as the average of sensitivity and specificity. And the ARI gives a normalized
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measure of agreement between the predicted clusters and the ground truth. Unlike the other metrics,
it ranges from -1 to 1, with higher values also indicating better agreement between the two clusterings.
A score of 0 indicates random clustering, while negative scores indicate a performance worse than
random.

3 Taxonomy of Novel Class Discovery methods

In this section, NCD works are organized by the way in which they transfer knowledge from the labeled
set Dl to the unlabeled set Du. Also identified by [22], and [23], NCD methods adopt either a one-
or two-stage approach. An overview of the methods that are studied in this section is provided in
Table 2, along with a brief description of their contributions.

The first NCD works published were generally two-stage approaches, so they are described here
first. They tackle the NCD problem in a way similar to cross-task Transfer Learning (TL) methods.
They first focus on Dl only (like a source dataset in TL) before exploring Du (similarly to a target
dataset without labels in TL). Within this category, two families of methods can be distinguished: one
uses Dl to learn a similarity function, while the other incorporates the features relevant to the classes
of Dl into a latent representation.

More recent methods adopt one-stage approaches and process Dl and Du simultaneously through
a shared objective function. All the one-stage methods reviewed here work in a similar manner, where
a latent space shared by Dl and Du is trained by two classification networks with different objectives.
These objectives usually include clustering the unlabeled data and maintaining good classification
accuracy on the labeled data.

Knowledge
transfer method

Article Main contributions

T
w
o
-s
ta

g
e
m
e
th

o
d
s

Similarity func-
tion learned on Dl

CCN [5] The first article to define and solve the NCD problem.

MCL [19]
Improvement of [5] and introduction of the modified bi-
nary cross-entropy with inner product.

Latent space
learned on Dl

DTC [14] Adaptation of a deep clustering method [24] for NCD.

MM/MP [25]
Formalization of the assumptions behind NCD. Solving
NCD with a limited quantity of unlabeled data.

O
n
e
-s
ta

g
e
m
e
th

o
d
s

Joint objective on
Dl and Du

AutoNovel [13, 18]
Using SSL to pre-train using all the data. The RankStats
method for pseudo labeling. Joint objective of classifica-
tion on Dl and clustering on Du.

CD-KNet-Exp [15]
Using the Hilbert Schmidt Independence Criterion to
bridge supervised and unsupervised information.

Unnamed [26] Insertion of the pre-training objective in the joint loss.

OpenMix [27]
Creating synthetic samples with mixed known and un-
known classes to produce robust pseudo labels.

NCL [16]
Adapting contrastive learning to the NCD setting, along
with NCD-specific hard-negative generation.

WTA [28]
A solution for NCD in multi-modal video data, using
WTA hashing [29] for pseudo labeling.

DualRS [30]
Automatic extraction of both global and local features of
images to define robust pseudo labels.

Spacing loss [23]
Learning an easily separable representation with spaced-
out spherical clusters.

TabularNCD [31] Solving the NCD problem for tabular datasets.

Table 2: Main contributions of the works in NCD, organized by the method of knowledge transfer
from Dl to Du.
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3.1 Two-stage methods

3.1.1 Learned-similarity–based

The general workflow of learned-similarity–based methods is illustrated in Figure 5. Learned-similarity–
based methods start by learning on Dl a function that is also applicable on Du and determines if pairs
of instances belong to the same class or not. As the numbers Cl and Cu of classes can be different,
a binary classification network is generally trained by deriving supervised pairwise labels from the
existing class labels Y l. The learned binary classifier is then applied on each unique pair of instances
in the unlabeled set Du = {Xu} to form a pairwise pseudo label matrix Ỹ u. This matrix is used as a
target to train a classifier on Du and make the final class prediction.

Figure 5: General workflow of learned-similarity–based methods.

In this section, we review two of the main learned-similarity—based methods of the literature.
CCN [5] is the first to tackle the very specific problem of NCD, and MCL [19] makes improvements to
CCN and defines a loss function used in many subsequent NCD works.

• Constrained Clustering Network (CCN) [5] tackles the cross-domain Transfer Learning
(TL) problem which is outside of the scope of this review, as well as a cross-task TL problem that
corresponds to NCD. In the latter, the method seeks to cluster Du by using the knowledge of a network
trained on Dl. In the first stage, a similarity prediction network is trained on Dl to distinguish if pairs
of instances belong to the same class or not. This network is then applied on Du to create a matrix of
pairwise pseudo labels Ỹ u (similarly to must-link and cannot-link constraints). In the second stage,
a new classification network is defined with Cu output neurons with the objective of partitioning Du.
It is trained on Du by comparing the previously defined pseudo labels to the KL-divergence between
pairs of its cluster assignments. In other words, if for two samples xi and xj the value in the pseudo

labels matrix is 1 (i.e. Ỹ u
i,j = 1), the two cluster assignments of the classification network must match

according to the KL-divergence. The idea behind this approach is that if a pair of instances is sim-
ilar, then their output distribution should be similar (and vice-versa), resulting in clusters of similar
instances according to the similarity network.

• Meta Classification Likelihood (MCL) [19] is a continuation of CCN [5] by the same authors.
They also consider multiple scenarios, one of them being “unsupervised cross-task transfer learning”,
which corresponds to the NCD setting. Similarly to CCN [5], pairwise pseudo labels are constructed
on Du by a similarity prediction network trained on Dl. A classification network with Cu output
neurons is also defined to partition Du. But this time, the KL-divergence is not used to determine if
two instances were assigned to the same class. Instead, they use the inner product of the prediction
pi,j = ŷTi · ŷj . This pi,j will be close to 1 when the predicted distributions ŷi and ŷj are sharply peaked
at the same output node and close to 0 otherwise. This is a simple yet effective idea that can be
directly compared to the pairwise pseudo labels ỹi,j ∈ {0, 1} and enables the use of the usual binary
cross-entropy (BCE) as a loss function:

LBCE = −
∑
i,j

ỹi,j log(ŷ
T
i · ŷj) + (1− ỹi,j)log(1− ŷTi · ŷj) (3)
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This is an important formalization of the classification problem with pairwise labels that has been
used in many subsequent NCD papers.

3.1.2 Latent-space–based

The general workflow of latent-space–based methods is illustrated in Figure 6. These methods start
by training with Dl = {X l, Y l} a latent representation that incorporates the important characteristics
of the known classes Y l. This is usually done by defining a deep classifier with several hidden layers.
After training with cross-entropy, the output and softmax layers are discarded, and the last hidden
layer is now regarded as the output of an encoder. These methods make the assumption that the high-
level features of the known classes are shared by the unknown classes. As the latent space highlights
these features, Xu is then projected inside, and any off-the-shelf clustering method can be applied to
discover the unknown classes.

Figure 6: General workflow of latent-space–based methods

Two relevant latent-space–based methods are summarized below. DTC [14] extends to the NCD
setting a deep clustering method, which is very suitable for the NCD problem. MM [25] formalizes the
assumptions behind NCD and proposes to train a set of expert classifiers to cluster the unlabeled data.

• Deep Transfer Clustering (DTC) [14] is based on an unsupervised deep clustering method,
DEC [24], which clusters the data while learning a good representation at the same time. Unlike many
deep clustering methods, DEC does not rely on pairwise pseudo labels. Instead, it maintains a list of
class prototypes that represent the cluster centers and assigns instances to the closest prototype. To
adapt DEC to the NCD setting, DTC initializes a representation by training a classifier with cross-
entropy on Dl using the ground truth labels. The embedding of Du is then obtained by projecting
through the classifier whose last layer was removed. An intuitive conclusion for DEC is that if the
classes Y l and Y u share similar semantic features, DEC should perform better on the embedding of
Du produced this way.

After projection of Du, DTC applies DEC with some improvements. Namely, the clusters are
slowly annealed to prevent collapsing the representation to the closest cluster centers, and they find
that further reducing the dimension of the learned representation with Principal Component Analysis
(PCA) leads to an improved performance.

• Meta Discovery with MAML (MM) [25] proposes a new method along with theoretical
contributions to the field of NCD, by defining a set of conditions that must be met so that NCD is
theoretically solvable. In simple terms, they state that: (1) known and novel classes must be disjoint
(2) it must be meaningful to separate observations from X l and Xu (3) good high-level features must
exist for X l or Xu and based on these features, it must be easy to separate X l or Xu (4) these high-
level features are shared by X l and Xu. These four conditions are worthy of consideration when the
NCD problem is addressed for a new dataset. The reader may find more details in the original article.

Based on the assumption that X l and Xu share high level features where the partitioning is easy,
the authors suggest that it is possible to cluster Du based on the features learned on Dl. Therefore,
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they propose a two-stage approach that starts by training a number of “expert” classifiers on Dl with
a shared feature extractor. These classifiers are constrained to be orthogonal to each other to ensure
that they each learn to recognize unique features of the labeled data. The resulting latent space should
reveal these high-level features, shared by the labeled and unlabeled data, and should be sufficient to
cluster Du. The expert classifiers are then fine-tuned on the unlabeled data Du with the BCE of
Equation (3) by defining pseudo labels based on the similarity of instances in the latent representation
learned on Dl. The output of the classifiers after fine-tuning is used as the final prediction for the
unlabeled data.

This paper also makes experiments given a limited quantity of unlabeled data, and shows that its
method is more robust than the competitors in this case.

3.2 One-stage methods

3.2.1 Introduction

The general workflow of one-stage methods is illustrated in Figure 7. In opposition to two-stage
methods, one-stage methods exploit both sets Dl and Du simultaneously. Some of these methods still
have multiple steps (such as pre-training on Dl), but they are characterized by their joint use of Dl and
Du during the clustering phase. Among two-stage approaches, both similarity (see Section 3.1.A) and
latent-space based (see Section 3.1.B) are negatively impacted when the relevant high-level features
are not completely shared by the known and unknown classes, as shown in [17]. But by handling data
from both sets of classes, one-stage methods will inherently obtain a better latent representation less
biased towards the known classes.

Figure 7: General workflow of one-stage methods. The regularization loss is omitted for the sake of
clarity.

Most one-stage methods jointly train two classification networks (see Figure 7). One predicts the
labels of Dl and introduces the relevant features of the known classes, and the other partitions Du

using pseudo labels usually defined with similarity measures. By training both networks on the same
latent space, they share knowledge with other. In this survey, the classification network trained on Du

will be referred to as a “clustering” network, since it is trained with unlabeled data.
One-stage methods define a multi-objective loss function which typically has 3 components: cross-

entropy (LCE), binary cross-entropy (LBCE) and regularization (LMSE). The cross-entropy loss is
simply used to train the classification network with the ground-truth labels. The binary cross-entropy
loss compares the prediction of the clustering network to pseudo labels (see Equation (3)). And the
regularisation loss ensures that the model generalizes to a good solution. This is usually done by
encouraging both networks to predict the same class for an instance and its randomly augmented
counterpart (see column “Data Augmentation” in Table 3).

While Section 3.1 was, to the best of our knowledge, an exhaustive list of the two-stage methods,
there is a larger (and fast growing) number of papers that follow a one-stage approach. For this
reason, only four methods representative of the literature are first detailed, and a few other methods
are described more concisely in the last section.
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3.2.2 AutoNovel

AutoNovel [13, 18] is the first one-stage method proposed to solve the NCD problem. It introduced the
architecture illustrated in Figure 7 and inspired many subsequent works [16, 23, 27, 28, 30]. AutoNovel
starts by carefully initializing its encoder using the RotNet [32] Self-Supervised Learning (SSL) method
to train on both labeled and unlabeled data. As SSL does not leverage the labels of known classes,
the learned features will not be biased towards the known classes. At this point, the authors consider
that the features learned by the encoder will be representative of all data and will be useful for any
given task, so they freeze all but the last layer of the encoder. Finally, the labeled data is used to
train for a few epochs the classifier and fine-tune the last layer of the encoder. This concludes the
initialization of the representation (the shared encoder in Figure 7), which is crucial as the next step
involves determining pseudo labels in the latent space based on pairwise similarity measures.

To realize the joint learning on Dl and Du, the two classification networks that can be seen in
Figure 7 are added on top of the encoder. The three components of the model (shared encoder,
classification network and clustering network) are then trained using a loss composed of the three
components described in the introduction of this section:

LAutoNovel = LCE + LBCE + LMSE (4)

As AutoNovel uses the BCE of Equation (3), the inner products of the clustering network predictions
are compared to the pairwise pseudo labels defined by their original RankStats (for ranking statistics)
method (see Section 5.2).

3.2.3 Class Discovery Kernel Network with Expansion (CD-KNet-Exp)

CD-KNet-Exp [15] is a multi-stage method that constructs a latent representation using Dl and Du

that is suitable, after training, to the discovery of the novel classes by a k-means. It starts by pre-
training a representation with a “deep” classifier on Dl only. Since this embedding could be highly
biased towards the known classes, and may not generalize well to Du, the representation is then
fine-tuned with both Dl and Du. In this second stage, they optimize the following objective:

max
U,θ

H(fθ(X), U) + λH(fθ(X
l), Y l) (5)

f is the feature extractor (or encoder) of parameter θ. H(P,Q) is the Hilbert Schmidt Independence
Criterion (HSIC). It measures the dependence between distributions P and Q. And U is the spectral
embedding of X. Intuitively, the first term encourages the separation of all classes (old and new) by
performing something similar to spectral clustering. And the second term introduces the supervised
information from the known classes by maximizing the dependence between the embedding of X l and
its labels Y l.

This second step produces a latent space that should have incorporated the information from both
known and unknown classes and be easily separable. For this reason, the embedding of the data is
finally fθ(X

u) partitioned with k-means clustering.

3.2.4 OpenMix

The principle of OpenMix [27] is to exploit the labeled data to generate more robust pseudo labels for
the unlabeled data. It relies on MixUp [33], which is widely used in supervised and semi-supervised
learning. As MixUp requires labeled samples for every class of interest, applying it directly on the
unlabeled data would still produce unreliable pseudo labels. Instead, OpenMix generates new training
samples by mixing both labeled and unlabeled samples.

First, a latent representation is initialized using the known classes only. Then, a clustering network
is defined to discover the new classes using a joint loss on Dl and Du. The model is trained with
synthetic data that are a mix of a sample from a known class and a sample from an unknown class.
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The synthetic data points are generated with MixUp, while the labels are a combination of the ground-
truth labels of the labeled samples and the pseudo labels determined using cosine similarity for the
unlabeled samples (see Figure 8). The authors argue that the overall uncertainty of the resulting
pseudo labels will be reduced, as the labeled counterpart does not belong to any new class and its
label distribution is exactly true.

Figure 8: Example of synthetic label generated by Openmix [27]. Here, it is a mix of a labeled sample
of class C1 and an unlabeled sample with pseudo label C4.

These synthetic labels are compared to the prediction of the model: (i) the classification network
predicts the known part and (ii) the clustering network the unknown part (see Figure 7) of the full
label space.

The authors observe that the clustering network has good accuracy on the samples that it predicted
with high-confidence. Based on this observation, they regard these samples as reliable anchors that
are further integrated with unlabeled samples to generate even more combinations with MixUp.

3.2.5 Neighborhood Contrastive Learning (NCL)

NCL [16] is inspired by AutoNovel [13] as it uses the same architecture (see Figure 7) and pre-trains its
representation in the same way. Its main contribution is the addition of 2 contrastive learning terms
to the loss of AutoNovel (see Equation (4)) to improve the learning of discriminative representations.
The first one is the supervised contrastive learning term from [34] applied to the labeled data using
the ground-truth labels. The second term is applied on the unlabeled data and adapts the original
unsupervised contrastive learning loss to the NCD problem to exploit both labeled and unlabeled data.

For this second term, the authors maintain a queue Mu of samples from past training steps, and
consider for any instance in a batch that the k most similar instances from the queue are most likely
from the same class. The contrastive loss, for these positive pairs is defined for the embedding zui of
an instance xu

i as:

l(zui , ρk) = −1

k

∑
z̄u
j ∈ρk

log
eδ(z

u
i ,z̄u

j )/τ

eδ(z
u
i ,ẑu

i )/τ +
∑|Mu|

m=1 e
δ(zu

i ,z̄u
m)/τ

(6)

with ρk the k instances most similar to zui in the unlabeled queue Mu, δ the similarity function and
τ a temperature parameter.

Additionally, synthetic positive pairs (zu, ẑu) are generated by randomly augmenting each instance.
The contrastive loss for positive pairs is written as:

l(zu, ẑu) = −log
eδ(z

u,ẑu)/τ

eδ(zu,ẑu)/τ +
∑|Mu|

m=1 e
δ(zu,z̄u

m)/τ
(7)

Finally, “hard negatives” are introduced in the queue Mu to further improve the learning process.
Hard negatives refer to similar samples that belong to a different class and are an important concept
in contrastive learning. Selecting hard negatives in Du can be difficult since there are no class labels
available. Therefore, the authors take advantage of the fact that the classes ofDl andDu are necessarily
disjoint and create new hard negative samples by interpolating easy negatives from the unlabeled set
(i.e. instances that are most likely true negatives) with hard negatives from the labeled set.
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To summarize, the overall loss that is optimized by the model is:

LNCL = LAutoNovel + lscl + αl(zui , ρk) + (1− α)l(zu, ẑu) (8)

where lscl is the supervised contrastive loss term for the labeled samples of Dl and α is a trade-off
parameter.

3.2.6 Other methods

We briefly describe a few other one-stage NCD works here. In [26], the SSL objective of RotNet [32]
and joint objective of Equation (4) are merged in a single loss function. The shared encoder is therefore
influenced by the classification network, the clustering network and a linear layer that predicts the
random rotations of images. The authors argue that the self-supervised signals will provide a strong
regularization that will alleviate the performance degradation caused by the noisy pseudo labels.

The method proposed in [28] is able to process multi-modal data, composed of both video and
audio. Two feature encoders are trained with Noise Contrastive Estimation (NCE) [35], and the latent
representations are concatenated before being fed to either a classification or clustering network. The
Winner-Take-All hash [29] is used to measure the similarity between each pair of unlabeled samples
during the definition of pseudo labels required to train the clustering network. The authors argue that
WTA is more robust to noise and effectively captures the structural relationships among the objects
(see [28] for more details).

The Dual Ranking Statistics (DualRS) [30] method trains two framework branches on a shared
latent representation. Both branches have a classifier trained to predict the known classes and a
clustering network trained with pseudo labels and Equation (3). One branch is tasked to extract
global features, as pseudo labels are defined by measuring the similarity between whole images. The
other branch focuses on individual local details, and pairwise similarities are computed using only
part of each image. The authors argue that these branches are complementary to each other, as they
focus on different granularity of the data. The global branch may easily find similarities and introduce
more false positives and have high recall (but low precision), while the local-part branch will be more
“strict” and have high precision (but low recall). To make the two branches communicate, agreement
between the similarity score distributions of unlabeled data is encouraged.

Similarly to [15], the Spacing Loss [23] method shapes a latent space where the novel classes are
easily separable. During training, the representation is slowly guided to have spaced-out clusters that
are equidistant to each other. Each epoch alternates between learning with pseudo labels derived from
the closest cluster centers and modifying the cluster centers themselves. During inference, a k-means
is run in the learned latent representation to discover the novel categories.

Finally, to the best of our knowledge, a single method has attempted to solve NCD in the context
of tabular data [31]. It pre-trains a simple encoder of dense layers with the VIME [36] self-supervised
learning method and adopts the two heads architecture of Figure 7. Similar to other one-stage methods,
known classes are classified jointly with clustering on the unlabeled data, and pseudo labels are defined
based on pairwise cosine similarity.

3.3 Estimating the number of unknown classes

The assumption that the number Cu of unknown classes in the unlabeled set Du is known can be
unrealistic in some scenarios. For this reason, a few methods were proposed to automatically estimate
this number Cu.

A method used in [5, 19, 30, 37], consists in setting the number of output neurons of the clustering
network to a large number (e.g. 100). In doing so, we rely on the clustering network to use only
the necessary number of clusters and to leave the other output neurons unused. Clusters are counted
if they contain more instances than a certain threshold. This approach is surprisingly simple, but
displays stable results in the different articles that experimented it.
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In [12, 38], a k-means is performed on the entire dataset Dl ∪Du. The number of unknown classes
Cu is estimated to be the k that maximized the Hungarian clustering accuracy (see Section 2): a k too
high will result in clusters assigned to the null set and a number too low will have clusters composed
of multiple classes, both cases will be considered as being assigned incorrectly.

Finally, another popular idea is to make use of the known classes [14, 18, 13, 39]. This process
is illustrated in Figure 9. The known classes of Dl are first split into a probe subset Dl

r and a
training subset Dl\Dl

r containing the remaining classes. The set Dl\Dl
r is used for supervised feature

representation learning, while the probe set Dl
r is combined with the unlabeled set Du. Now, a

constrained k-means is run on Dl
r∪Du. Part of the classes of Dl

r are used for the clusters initialization,
while the rest are used to compute 2 cluster quality indices (average clustering accuracy and cluster
validity index, see [14]). Note that this can be difficult to use when the number of known classes is
small, since it involves many class splits.

Figure 9: Number of unknown classes estimation process from DTC [14].

3.4 Methods summary

Table 3 summarizes the important characteristics of the methods that were described in this section.
These characteristics include the type of data processed, the method of defining pairwise pseudo
labels and, if applicable, the method of estimating the number of unknown classes Cu. From column
“Unknown Cu”, it is evident that all the works reviewed here assume knowledge of the number of
unknown classes. Moreover, this table highlights the popularity of pairwise pseudo labeling as a means
of training classification networks on unlabeled data, with only DTC [14] and CD-KNet-Exp [15]
relying on different processes.

4 New domains derived from Novel Class Discovery

As the number of NCD works increases, new domains closely related to it are emerging. Researchers
are designing scenarios where they relax some of the hypotheses or define new tasks inspired by NCD.
This section will provide a brief overview of some of the most important of these domains. Given their
similarity in settings, Table 4 highlights some of the key differences among them.

NCD GCD NCDwF
test data ∈ Y l ∪ Yu ✗ ✓ ✓

Dl and Du are avail-
able simultaneously

✓ ✓ ✗

Table 4: Distinctions between the related domains.

Generalized Category Discovery (GCD) [12] is a setting that is gaining traction from the
community, with some very recent articles published [12, 39, 41, 38]. GCD was designed to be a less
constrained and more realistic setting of Novel Class Discovery, as it does not assume that samples
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Method
Data
Type

Backbone
architecture

Pairwise
pseudo labels

Pre-
training

Data Aug-
mentation

Unknown
Cu

T
w
o
-s
ta

g
e
m
e
th

o
d
s

CCN [5] Image ResNet18
From learned

classifier
✗ ✗

✗ +
Estimated
(k = 100)

MCL [19] Image
LeNet, VGG8
and ResNet

From learned
classifier

✗ Crop and flip
✗ +

Estimated
(k = 100)

DTC [14] Image
ResNet18
and VGG

✗ (class
prototypes)

CE on Dl Crop and flip

✗ +
Estimated
(probe
classes)

MM/MP [25] Image
ResNet18

and VGG16
RankStats [13] CE on Dl ✗ ✗

O
n
e
-s
ta

g
e
m
e
th

o
d
s

AutoNovel [13, 18] Image
VGG and
ResNet18

RankStats [13]
RotNet
[32] on

Dl ∪ Du
Crop and flip

✗ +
Estimated
(probe
classes)

CD-KNet-Exp [15] Image Custom CNN ✗ CE on Dl ✗ ✗

Unnamed [26] Image ResNet18
Threshold on

SNE
✗

Yes,
unspecified

✗

OpenMix [27] Image
VGG and
ResNet18

Threshold
cosine

similarity
CE on Dl Crop and flip ✗

NCL [16] Image ResNet18
Threshold

cosine
similarity

RotNet
[32] on

Dl ∪ Du
Crop and flip ✗

WTA [28]
Image &
Video

R3D-18 and
ResNet18

WTA hash [29] ✗

Crop, resize,
flip, color
distortion
and blur

✗

DualRS [30] Image RestNet18
Dual ranking

statistics

RotNet
[32] on

Dl ∪ Du
Crop and flip

✗ +
method

from DTC

Spacing Loss [23] Image ResNet18

Threshold
cosine sim. +

class
prototypes

CE on Dl Crop and flip ✗

TabularNCD [31] Tabular Custom DNN
Number of
most similar

VIME
[36] on

Dl ∪ Du
SMOTE [40] ✗

Table 3: Overview of the characteristics of NCD methods.
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during inference will only belong to the unknown classes. As the test data can belong to either known
or unknown classes, the task at inference becomes to (i) accurately classify samples from known classes
and (ii) find the clusters of samples from unknown classes. Compared to NCD, this poses a greater
challenge for designing an efficient model. Methods in this domain are thus evaluated for both their
classification and clustering performance. Note that this setting is close to Open World Learning, but
still different as the training data is still composed of two separate sets (Dl and Du).

This problem was first solved in 2021 by [42], but it was not immediately recognized as a setting
distinct from NCD. Later, as multiple articles were published simultaneously, different names were
used and problem was presented in varying ways. Some of these names include Generalized Novel
Class Discovery [41], Open Set Domain Adaptation [43] and Open-World Semi-Supervised Learning
[44], however, they all ultimately aimed to solve the same task.

In the first article that formalizes the GCD problem [12], the authors find that existing NCD
methods are prone to overfitting on the known classes. Instead of using a parametric classifier, which
was seemingly the cause of the overfitting, they use contrastive learning and a semi-supervised k-means
to recognize images.

Another method of interest is XCon [38]. In this case, the authors focus on fine-grained Generalized
Category Discovery, where different classes have very close high-level features (e.g. two different species
of birds where only the beak is different). They propose to partition the data into k sub-datasets that
share irrelevant cues (e.g. background and object pose) to force the method to focus on important
discriminative information.

Note: GCD and its links to Open-World Learning are discussed in Section 6.4.

Novel Class Discovery without Forgetting (NCDwF) [45] is another domain that relaxes some
of the assumptions behind NCD. In NCDwF, Dl and Du are not available simultaneously. Instead,
during training, we are first given Dl to train the standard supervised task of discriminating known
classes. Then, Dl becomes unavailable and we are given Du with the goal of discovering the unknown
classes. At inference time, the learned model is evaluated for its performance on instances from a
mix known and unknown classes. This task also poses a greater challenge than NCD as it needs to
recognize instances from the full class distribution Y l ∪ Yu. And it is more challenging than GCD as
the two training sets Dl and Du are not available at the same time. This means that the partitioning
of Du must be learned while avoiding catastrophic forgetting on known classes (hence the name). This
domain can be applied if, for example, a model that was previously trained to identify some classes in
a dataset that is no longer accessible, and we need to detect new classes while maintaining accuracy
on the previously learned categories.

ResTune [22] is the first to solve NCDwF. This article examines three distinct test cases, with
NCD and NCDwF among them. This two-stage method starts with pre-training using the labeled
data Dl and a simple cross-entropy loss. Then, during the training on Du only, the previously learned
representation and classifier are frozen to avoid both forgetting of known classes and overfitting on the
unlabeled data. The partitioning is done by adapting DEC [24] to the NCDwF setting.

In [46], this problem is referred to as class-incremental novel class discovery (class-iNCD). Given
the NCDwF setting, a two-stage method that seeks to define a classifier capable of predicting in the
full label space Y l ∪ Yu is proposed. Similarly to ResTune [22], an encoder and a classifier are first
trained with supervision on the labeled set Dl. Then, during the exploration of the unlabeled set Du,
the previously learned classifier is extended with Cu new output neurons. Additionally, a classification
network is added on the shared latent space to partition the unlabeled samples. It is trained with the
unsupervised BCE objective of Equation (3) and pseudo labels defined by the RankStats method [13].
The classes predicted by this network are used as targets for the full classification network.

Finally, [45] introduces the name NCDwF. To avoid the forgetting, it proposes a method to gen-
erate synthetic samples that are representative of each known class and act as a proxy for the no
longer available labeled data. Furthermore, the authors propose a mutual-information based regu-
larizer which improves the partitioning of novel categories, and a Known Class Identifier that helps
generalize inference when the test data includes instances from both known and unknown classes.
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Novel Class Discovery in Semantic Segmentation (NCDSS) is a task defined in [47] which
consists in segmenting images that contain novel classes, given a set of labeled images with known
foreground and background classes. Since the pixels of multiple categories within a single image
must be correctly classified, it is more challenging than NCD. Similarly to NCD, the condition that
Y l ∩ Yu = ∅ is respected, meaning that no image in the unlabeled set contains an object from the
known classes. The framework they propose has three stages: base training, clustering with pseudo
labels, and novel fine-tuning. In the base training stage, the model is trained with labeled base data,
which is then used in novel images to filter out salient base pixels and assign base labels. In the
clustering stage, novel images are fed into the model to obtain novel foreground pixels, which are then
used for clustering and assigning novel labels. To address the issue of noisy clustering pseudo labels,
an Entropy-based Uncertainty Modeling and Self-training (EUMS) framework is proposed to improve
the novel fine-tuning stage by dynamically splitting and reassigning novel data into clean and unclean
parts based on entropy ranking.

5 Tools for Novel Class Discovery

Some specific learning paradigms are often found in NCD works. Namely: (i) Self-Supervised Learn-
ing (SSL) is a popular approach for initializing an encoder, (ii) Pairwise pseudo labels are used in
almost all NCD methods to provide a weak form of supervision for classification neural networks,
and (iii) contrastive learning has been employed by some to construct meaningful and discriminative
representations. In this section, these 3 key paradigms to design NCD methods are presented and
discussed.

5.1 Self-Supervised Learning

As illustrated in Table 3, many methods rely on similarity measures in the latent space to define
pairwise relationships between unlabeled instances. To avoid measuring the similarity after projection
through an encoder that was randomly initialized, some methods train for a few epochs with cross-
entropy on the labeled samples only. However, this could result in features that are highly biased
towards the labeled data and that poorly represent the unknown classes. Instead, recent methods have
taken advantage of Self-Supervised Learning (SSL) to bootstrap their latent representation.

SSL is a technique that is widely used in computer vision and natural language processing. The
general idea behind SSL methods is to define pretext tasks that do not require labels. A pretext task is a
fake problem that can be defined depending on the type of data that is used. For example, predicting
the angle of rotation of an image [32], re-coloring [48] and completing masked words in sentences
[49] are common pretext tasks. Intuitively, SSL allows the model to exploit larger amounts of data
by using both labeled and unlabeled data. The model pre-trained this way will be able to extract
more interesting properties, subtle patterns and less common representations of the data, resulting in
improved performance compared to solely relying on labeled data.

In the context of Novel Class Discovery, SSL allows the model to learn a robust representation that
isn’t biased towards the known classes, as all of the data (labeled and unlabeled) is used. Among SSL
methods, RotNet [32] has been a popular choice in NCD works [13, 16, 30]. It is a simple and efficient
method where the network must predict the rotation angle, from 0, 90, 180 or 270 degrees, applied to an
image. DINO (for self-distillation with no labels) [50] has also been used in the context of GCD [12]. It
employs a self-distillation scheme where a student network learns from a teacher given different crops of
the same image. It is a powerful method for vision transformers that produces feature representations
where similar objects are close to each other, which is ideal for NCD applications. Finally, VIME (for
value imputation and mask estimation) [36] has been used by TabularNCD [31] to pre-train dense
layers in the context of tabular data by reconstructing corrupted samples. However, as SSL still
struggles to be applied to domains such as tabular data, it has only marginally improved performance.
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This is partly due to the fact that SSL methods rely heavily on the spatial and semantic structure of
image or language data to design pretext tasks. Thus, only a few works have been proposed to deal
with heterogeneous data [36, 51, 52].

5.2 Pseudo labels

Pseudo labeling is a technique that provides “weak” labels for unlabeled data. It is particularly useful
to exploit large amounts of unlabeled data with models that require a target to be trained. Apart from
NCD, pseudo labels (sometimes called soft labels) are found in other domains, such as Semi-Supervised
Learning where unlabeled samples that were predicted with high confidence are added to the training
data [53]. In Deep Clustering, they are used to iteratively refine a latent representation by predicting
these labels [9, 54].

As expressed in Section 3, most NCD methods define pairwise pseudo labels to represent the
relationships between pairs of instances in the unlabeled set Du. In the case of learned-similarity–
based NCD methods, they are a way of directly transferring knowledge from the known classes (see
Section 3.1.1). For the rest, pairwise pseudo labels are defined and used in a manner similar to Deep
Clustering methods, where they provide supervision for a classification network tasked to partition
the unlabeled data2. Instead of directly assigning class labels to instances, the model is only tasked
to predict the same label for “positive” relations and a different class for “negative” relations. This
conversion to a different task is called problem reduction [55]. It is considered as a less complex problem
to solve and to have a lower cost to collect the target. All pseudo labeling techniques that rely on
a similarity measure make the assumption that instances close to each other (usually in the latent
space) are likely to belong to the same class. Pairwise pseudo labels are defined in {0, 1} and can be
compared for example to the inner product of the prediction through the binary cross-entropy (see
Equation (3)).

(a) Representation of the
data points of the batch.

(b) Pairwise similarity
matrix.

(c) Pairwise pseudo la-
bels matrix for λ = 0.5.

Figure 10: The pairwise pseudo labels definition process.

To aid the reader in his understanding, Figure 10 illustrates a simple pseudo labeling process
employed by OpenMix [27] and NCL [16]. Given a pair (xu

i , x
u
j ) in a batch (Figure 10(a)), the latent

representation (zui , z
u
j ) is extracted and their cosine similarity δ(zui , z

u
j ) = zui ·zuj /∥zui ∥∥zuj ∥ is computed

(Figure 10(b)). To use this pairwise similarity matrix as a target for the classification network, it needs
to be binarized. And a solution is to set a threshold λ for the minimum similarity score required to
consider two instances as belonging to the same class (Figure 10(c)). In this case, the pseudo labels
are defined as:

ỹij = 1[δ(zui , z
u
j ) ≥ λ] (9)

Note that OpenMix sets λ to 0.9 and NCL uses 0.95 arbitrarily, but this is a hyper-parameter that
can be optimized. In the remainder of this section, some of the most commonly used pseudo labeling

2As this classification network is trained on unlabeled data using these pseudo labels, it is referred to as a “clustering”
network instead.
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techniques are introduced.

RankStats (for ranking statistics) is a pseudo labeling approach introduced in AutoNovel [13].
Instead of computing a scalar product or a difference between vectors, a pair of instances is considered
similar if their features that were “most activated” by the encoder are the same. The authors argue
that the most discriminative features of an image should have the highest values after projection.
Thus, RankStats tests whether the k highest values of a pair of embeddings are in the same locations:

ỹij = 1[topk(z
u
i ) = topk(z

u
j )] (10)

topk is a function that returns the indices of the k largest values in a vector. The order of the most
activated features is not required to be the same. It must only contain the same set of indices, making
RankStats more robust to discrepancies among the most discriminative features.

In [28], the Winner-Take-All (WTA) hash [29] is used to compare pairs of instances. WTA is an em-
bedding method that maps vectors to integer codes. In more detail, the projection zui of an instance xu

i

is randomly permuted, and the index of the largest elements in its k first values is recorded in chi . This
process is repeated H times for each sample zui to form the WTA hash code ci = (c1i , . . . , c

h
i , . . . , c

H
i ).

Samples are then compared by applying the same set of permutations and counting the number of
indices equal to each other:

ỹij = 1[1T · (ci = cj) ≥ µ] (11)

with µ a threshold. For reference, in [28], H is set to the size of the embedding (512), µ is selected
empirically to be 240 and k = 4.

Intuitively, WTA considers many different orders of features, avoiding the comparison to be domi-
nated by high frequency noise or small local regions that are highly activated. Replacing the RankStats
pseudo labeling method in AutoNovel [13] with WTA shows only marginal improvements. But for the
NCD method proposed by the authors in [28], WTA consistently outperforms other alternatives, such
as RankStats, cosine similarity or nearest neighbour.

Lastly, the quality of the pseudo labels has been explored in some articles. It is often expressed that
they can be noisy and unreliable, and as they have a strong influence on the clustering performance,
some works have approached this problem. OpenMix [27] mixes labeled and unlabeled samples with
MixUp [33] to generate higher confidence pseudo labels. DualRS [30] focuses on multiple granularity
of image crops to improve reliability. And [26] proposes utilizing local structure information in the
feature space to construct pairwise pseudo labels, as they are more robust against noise.

5.3 Contrastive Learning

Contrastive Learning [56, 57] is a self-supervised representation learning technique where the objective
is to learn a robust representation. This is done by pulling together similar samples and pushing apart
dissimilar samples. As labels are not available, a positive pair is usually formed of a sample and its
augmented counterpart, while negative pairs are formed with the rest of the data.

Contrastive learning can be easily adapted to take into account labeled samples and to produce
even higher quality discriminative representations [34]. For these reasons, it is an ideal technique for
the task of Novel Class Discovery, and some NCD works have already used contrastive terms. For
instance, NCL [16] adapts the contrastive loss to exploit both the labeled and the unlabeled sets into
one holistic framework. Detailed in Section 3.2.5, their overall loss function is composed of (i) the
loss of AutoNovel [13] to partition the unlabeled data and (ii) two contrastive terms. The first is
the supervised contrastive loss [34] applied to the labeled data, and the second is the unsupervised
contrastive loss for the unlabeled data. Their method outperforms all other baselines in the comparison,
and they show that the contrastive terms help improve the discrimination of the model.
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The Noise-Contrastive Estimation (NCE) [35], has been employed by the WTA-based NCD method
of [28]. It is a parameter estimation method initially designed to be an alternative to the expensive
softmax function. Instead of computing the prediction of the model for every class, only the true class
and a few other (called noisy) classes have to be estimated. This principle inspired the supervised
contrastive loss [34], and it is employed in the NCD method of [28]. Given a batch of size n and the
projection zi of an instance xi, [28] defines the following loss:

LNCE = −log
exp(zi · ẑi/τ)∑

n 1[n ̸= i]exp(zi · zn/τ)
(12)

where ẑi is the augmented counterpart of zi, 1[n ̸= i] is an indicator function evaluating to 1 iff
n ̸= i and τ is a temperature parameter. Note that since the projection z is ℓ2-normalized, the cosine
similarity can be simplified to the inner product. In the case of the NCD method of [28], this NCE
loss is used to maintain a latent representation. Similarly to NCL [16], the unlabeled data has positive
pairs formed by a sample and its augmented counterpart, while negative pairs are formed with all other
samples in the batch. However, compared to [28], NCL reports higher accuracy on the CIFAR-100 and
ImageNet datasets. This could be attributed to the fact that NCL defines additional positive pairs by
selecting the most similar pairs in a queue of samples.

OpenCon [58] is a method proposed for the Generalized Category Discovery problem, where the
authors employ class prototypes to separate known and novel classes. All instances are assigned to their
closest prototype, which allows the definition of a set of pseudo-positives P(x) and pseudo-negatives
N (x) for each instance x. In conventional unsupervised contrastive learning frameworks, only the
augmented counterpart of an instance is used to form a positive pair. In this case, P(x) can be used
to define a larger number of positive pairs. Given an anchor point x, their contrastive loss is defined
as:

LOpenCon = − 1

|P(x)|
∑

z+∈P(x)

log
exp(z · z+/τ)∑

z−∈N (x) exp(z · z−/τ)
(13)

where τ is a temperature parameter and z is the ℓ2-normalized projection of x. Two additional terms
are optimized during training: the supervised contrastive loss [34] on the labeled data Dl and the
self-supervised contrastive loss [57] on the unlabeled data Du. During training, the class prototypes
are defined as moving averages and cluster assignments are updated after each epoch.

6 Related works

6.1 Unsupervised Clustering

The NCD problem is closely related to unsupervised clustering. In both domains, the aim is to find a
partition of a dataset where no prior knowledge on the unknown classes is available. Just like in NCD,
a common approach is to consider that the close neighborhood of an instance is likely to belong to
the same class. In this case, groups where instances are more similar to each other than they are to
other groups are created. The definition of this similarity can vary a lot depending on the purpose of
the study or domain-specific assumptions. The most widely known methods of clustering are usually
unsupervised, however we still distinguish them from the less common semi-supervised approach (see
Section 6.2) that leverages a small amount of information to guide the definition of the clusters.

In the completely unsupervised case, many shallow and deep learning based methods have been
proposed. We refer the reader to [24] for fundamental work and [59] for a more detailed survey.
Some of the main categories of clustering algorithms are: Centroid-based algorithms create clusters
by determining the proximity of data points to a central vector. Connectivity-based algorithms group
data points into clusters using a tree-like structure. Distribution-based algorithms model the data
with a chosen distribution and form clusters based on the likelihood of data points belonging to
the same distribution. Density-based algorithms define clusters as regions of high data density and
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consider points in sparsely populated areas as outliers. Finally, Deep Clustering methods aim at
jointly conducting dimensionality reduction (or feature transformation) and clustering, which is done
independently in other classical works [59].

As Deep Clustering methods learn rich informative representations while separating data into clus-
ters without supervision, their architectures and loss functions are often close to NCD methods where
they are even sometimes used as baselines. They can be easily adapted to the NCD setting, for exam-
ple by adding a supervised objective trained on the labeled data fromDl to guide the clustering process.

Discussion. As expressed in the introduction, fully unsupervised clustering is not a complete
solution to the NCD problem. Multiple and equally valid criteria to partition a dataset can be used,
so the definition of what constitutes a good class becomes ambiguous. This is why the use of a labeled
dataset becomes essential to narrow down what constitutes a proper class and guide the clustering
process. Nonetheless, clustering methods are a frequent building block in NCD methods. An example
of this is Deep Transfer Clustering [14], where the authors extend Deep Embedded Clustering [24] by
guiding its training process with the known classes. A few works use k -means and its variations for
label assignment in the feature space of a deep network [12, 15]. And [60] employs both k-means and
spectral graph theory to explore the novel classes.

6.2 Semi-Supervised Learning

Semi-Supervised Learning [61] is an instance of weak supervision, as it uses a limited amount of
information in order to carry out its task. It is often reviewed in Novel Class Discovery articles for the
similarity of its setup. Four different scenarios can be distinguished in Semi-Supervised Learning: semi-
supervised dimensionality reduction [62], semi-supervised regression [63], semi-supervised classification
[64, 65] and semi-supervised clustering [66, 67, 68]. Only the last two are relevant for our problem,
and they are briefly introduced below.

In Semi-Supervised Classification, only a small portion of the dataset is labeled. This is a setup
that can arise when labeling every instance is too costly, but we still wish to leverage the unlabeled
data. Similarly to supervised classification, the goal is to assign instances to one of the classes seen in
training, however traditional supervised classification won’t take advantage of the unlabeled data. In
this situation, a more accurate model can often be built using semi-supervised learning. Examples of
such models include constrained k-means and seeded k-means [64, 69]. They are extensions of k-means
that use a labeled subset to initialize the centroids of the clusters. It is important to note that the
methods in this domain focus on the classification task, where the classes in labeled and unlabeled sets
are the same. This is the main difference with the NCD domain, and the reason why semi-supervised
learning methods cannot be transferred to our problem.

In the case of Semi-Supervised Clustering, additional information in the form of “must-link”
and “cannot-link” constraints is usually available. It indicates if pairs of instances must or must not be
placed in the same cluster. Such relations can be derived from class labels. Examples of semi-supervised
clustering algorithms include COP-Kmeans [66], PCKmeans [67] and kernel spectral clustering [68].
The Novel Class Discovery problem could be reformulated as a Semi-Supervised Clustering problem by
defining must-link and cannot-link constraints. However, the complete set of constraints can only be
defined for the labeled data thanks to the ground-truth labels available. Only cannot-link constraints
can be defined between the labeled and unlabeled data (using the hypothesis that Cl ∩ Cu = ∅), and
no constraints can be defined for pairs of unlabeled data. We do not expect this set of constraints
to help the clustering process of the unlabeled data. Furthermore, most Semi-Supervised Learning
methods are modified versions of the k-means algorithm, and will also suffer when the clusters are not
spherical or when the dimension is too large and the euclidean distances becomes inadequate.

Discussion. Semi-supervised learning methods require either the classes to be known in advance
(in the case of partially labeled data) or known constraints on the observations, which is not the case in
NCD. Recent works [70, 71] have also shown that the presence of novel class samples in the unlabeled
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set negatively impacts the performance of such models. Some articles address this issue [72], but they
do not attempt to discover the novel classes. As such, semi-supervised works are not directly applicable
to the Novel Class Discovery problem.

6.3 Transfer Learning

Transfer Learning is an other domain often mentioned in NCD articles. It is a field of machine learning
that aims at leveraging knowledge from a source domain or task to solve a different (but related)
problem faster or with better generalization. In computer vision, Transfer Learning is commonly
expressed by starting the training from a model that was pre-trained on the ImageNet [73] dataset.
Two scenarios of transfer learning can be distinguished and they are introduced in Table 5.

Name Definition Example

cross-domain
transfer learning

Also known as domain adapta-
tion, a model trained to execute
a task on one domain is used to
learn the same task on a different
(but related) domain.

The knowledge of a classifier trained to
recognize positive or negative reviews on
the domain of movies can be transferred
to the domain of book reviews [74].

cross-task
transfer learning

The knowledge gained by learn-
ing to distinguish some classes is
then applied on other classes of
the same domain.

A model that was trained to recog-
nize the 5 first digits of the MNIST
dataset can be expected to more effec-
tively learn to distinguish the 5 other
digits of MNIST [75].

Table 5: Overview of the scenarios of transfer learning

With cross-domain transfer learning, a model can be pre-trained on a different but related
source dataset. This is useful when the target dataset has too few instances to obtain good generaliza-
tion. In this context, the “re-usability” of the source data depends on the overlapping of the features
of the source and target domains. This idea is explored in [76], where the authors distinguish two cat-
egories of approaches. The instance-based approaches attempt to reuse the source domain data after
re-sampling or re-weighting and are sensitive to such overlapping. And feature-representation-based
approaches try to find a good representation for both the source and target domain.

In cross-task transfer transfer learning, the label spaces are different. In this case, methods
learn a pair of feature mappings to transform the source and target domain to a common latent space
[77, 78]. Another approach is to learn a feature mapping to transform data from one domain to another
directly [79, 80].

Discussion. NCD can be viewed as an unsupervised cross-task transfer learning task, where the
knowledge from a classification task on a source dataset is transferred to a clustering task on a target
dataset. The large majority of Transfer Learning articles require the labels of both the source and
target domains to be known in advance, which makes the use of such methods impossible in our context
of class discovery. The Constrained Clustering Network (CCN) [5] is an exception in this regard. It is
a method proposed to solve two different transfer learning scenarios, one of which being a cross-task
problem where the labels of the target data that must be inferred are not available. This is essentially
the NCD problem, which eventually led to this paper being recognized as one of the earliest NCD
works.
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6.4 Open World Learning

Rather than being a domain in and of itself, Open World Learning (OWL) [1] is a broad term that
encompasses all the domains that live under the open-world assumption. Traditional machine learning
tasks focus on closed-world settings, where the test instances can only be from the distribution that was
seen during training. This is in opposition to the open-world setting, where instances can come from
outside of the training distribution. Some of these domains include Anomaly Detection (AD), Novelty
Detection (ND), Open Set Recognition (OSR), Out-of-Distribution Detection (OOD Detection) and
Outlier Detection (OD). They are concerned with either or both of semantic shift (when new classes
appear) and covariate shift (when the definition of the known classes changes).

To help the reader distinguish these domains, Table 6 summarizes a few important criteria. And a
general description of each of the 5 domains is provided below.

Need to ... NCD1 GCD2 AD3 ND4 OSR5 OOD6

Detection
OD7

recognize OOD instances ✗ ✓ ✓ ✓ ✓ ✓ ✓

have OOD samples during training ✓ ✓ ✓/✗ ✗ ✗ ✓ ✓

accurately classify known samples ✗ ✓ ✗ ✗ ✓ ✓ ✗

discover the new classes ✓ ✓ ✗ ✗ ✗ ✗ ✗

Table 6: Overview of the domains in Open-World Learning.

1Novel Class Discovery, 2Generalized Category Discovery, 3Anomaly Detection, 4Novelty Detection, 5Open Set
Recognition, 6Out-of-Distribution, 7Outlier Detection.

Anomaly Detection: Given a predefined “normality”, the goal of AD is to identify abnormal
observations. The abnormality can originate either from a semantic or covariate shift [81]. For example,
given a set of pictures of dogs, a model capable of recognizing if a picture is not a dog (i.e. a picture
of a cat) falls under semantic shift AD. In this case, the normality corresponds to all pictures of dogs.
And a model designed to recognize if a given picture of dog is from a breed seen in training falls under
covariate shift AD. We can see that the key to successfully building an AD model is to precisely define
the notion of normality.

Two categories of AD settings can be distinguished: either the training set represents the normal-
ity, or the the training set is labeled “normal” and “abnormal”. The first setting is usually preferred,
as anomalous data is often found in limited quantities (or even completely unavailable), which makes
unsupervised approaches more attractive than supervised ones.

Novelty Detection: From a clean training set with only instances of known classes, the goal of
ND is to identify if new test observations come from a novel class or not. This problem is very close
to Anomaly Detection, but it can be differentiated in two ways: First, this problem is concerned only
with semantic shift (i.e. the apparition of new classes). And second, it does not consider novel samples
as “anomalies” that must be discarded, but rather as new learning opportunities from events that were
not seen during training [82]. ND stems from the idea that during training, a model cannot have seen
all possible classes. Since this idea is very valid in production, traditional classification models can be
difficult to apply, and ND models are more convenient.

However, the authors of [1] conclude that the goal of ND is only to distinguish novel samples from
the training distribution, and not to actually discover the novel classes. Therefore, most methods
assume that the discovery of the new classes in the rejected examples is either the duty of a human
or a task that is outside of the scope of their research. This is a major difference with Novel Class
Discovery (NCD), as ultimately, the goal of NCD is to explore the novel samples. To the best of our
knowledge, [83] is an exception. In this work, an attempt is made by the system to solve this problem
while still addressing the other concerns of open-world learning.
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Open Set Recognition: The idea behind Open Set Recognition (OSR) [84] is that standard
neural networks have a tendency to output high confidence predictions even when confronted with
instances from classes that were never seen during training. OSR therefore tries to detect unknown
samples additionally to accurately classifying the known classes. An example of an OSR system would
be an application trained to recognize certain faces to allow entry into a building. Such a system must
(i) identify known people and (ii) reject the faces from people it has never seen instead of predicting
one of the known faces.

Out-of-Distribution Detection: Similarly to OSR, OOD Detection originates from the idea
that machine learning models can predict labels with high confidence for instances of classes they have
never seen during training. OOD Detection methods also aim to (i) accurately classify samples of
known classes and (ii) reject samples from outside the known distribution. Because the definition of
“distribution” depends on the application, OOD Detection methods cover a large range of methods.
These methods are generally given both In-Distribution (ID) and Out-of-Distribution (OOD) samples
during training (see Table 6) to narrow down the definition of ID. Note that OSR and OOD Detection
are very close both in setting and goal. However, they can be differentiated primarily by the fact that
OSR methods are tasked with identifying instances that suffer a semantic shift, but originate from the
same source dataset, while OOD Detection methods seek to identify semantically different instances
that come from a completely different dataset with non-overlapping classes.

Outlier Detection: OD is a task that deviates from the 4 other OWL tasks defined above, as
there is no train/test split and all the data is processed together. The goal is to detect samples that
present a significant semantic or covariate deviation from others according to some measure. Some of
the applications of such methods include network intrusion detection [85], video surveillance [86] and
dataset pre-processing [87]. Outlier Detection is a well-studied domain with a large number of proposed
methods. Distance-based methods identify points that are far away from all of their neighbors [88],
density-based methods select points in sparsely populated regions [89] and clustering-based methods
capture samples that did not fall in any of the major clusters [90].

Discussion. The main objective of Open World Learning (OWL) methods is generally to identify
instances that come from a different distribution than the known classes in order to reject them and
keep a high performance on known classes. These methods ignore the rejected instances and do not
seek to cluster them into novel classes (see Table 6). Because in the open-world setting, the data at
training or inference time will be a mix of In- and Out-of-Distribution samples, OWL methods are
always at least tasked to recognize Out-of-Distribution samples. This is not a concern in Novel Class
Discovery (which does not belong to OWL), as we are given separate datasets during training and only
unknown samples at inference. Instead, NCD could be seen as an extension from OWL works where,
after novel samples were detected, we seek to discover the underlying classes. But as the main focus
of these articles is not relevant to the NCD problem, it is difficult to transfer OWL works to NCD.

However, Generalized Category Discovery (GCD, see Section 4) can be seen as a domain that is
halfway between OWL and NCD. Like in NCD, methods in GCD are given two separate sets during
training: a labeled set of known classes and an unlabeled set of unknown classes. And like in OWL, test
samples in GCD can be either from known or unknown classes. Generalized Category Discovery is very
close to OSR and OOD Detection, as it shares their goal of accurately classifying known samples and
identifying unknown samples. It can, however, be distinguished by the fact that semantically shifted
samples originate from the same parent distribution (i.e. they are classes from the same dataset), and
it seeks to discover the unknown classes.

As many methods in AD/ND/OSR/OOD Detection/OD can be applied to detect instances that
are semantically different from the known classes, they could potentially be used for the task of GCD
to distinguish if instances come from known or novel classes. Such methods could be used in a two
stage approach, where test samples would first be designated as belonging to known or unknown
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classes using OWL methods, and then the samples of unknown classes would be clustered with NCD
methods. However, holistic approaches are usually preferred by researchers and works in GCD seem
to be following this path [12, 39, 41, 38].

7 Conclusion and perspectives

This survey extensively examined the publications in the new field of Novel Class Discovery. We
formally defined the setup and key components of NCD, and proposed a taxonomy that categorizes
NCD frameworks based on the way knowledge is transferred between the labeled and unlabeled sets.
We found that two-stage methods were initially popular, but their risk of overfitting on the known
classes encouraged defining single-stage methods, which are now widely adopted. We believe this
taxonomy will help guide future research by giving a clear overview of the families of approaches and
techniques that have already been explored. NCD is a newly emerging field that offers a more practical
setting compared to fully supervised or unsupervised methods in certain situations. This has led to the
creation of new domains, which we have also analyzed, as researchers have relaxed their assumptions
and devised new challenges inspired by NCD. Additionally, we identified and presented techniques and
tools that are commonly used in NCD. Finally, since this is a new domain that lies at the intersection
of several others, it can become challenging to distinguish NCD from other areas of research. Thus,
we also presented the domains most closely related to NCD and highlighted the main differences. We
hope that this last section will help readers unfamiliar with NCD understand what sets it apart from
other domains.

Despite the growing body of work in this area, several questions remain unanswered and some
perspectives, in our view, are worthy of further study. As we have seen in this survey, the majority
of NCD works are applied only to image data due to specialized architectures and techniques such as
data augmentation and self-supervised learning, which rely on the unique structure of images. They
are partly responsible for the success of NCD methods, and since they are not directly applicable
to other data types, most works are still limited to image data. However, it is worth exploring the
potential of applying such methods to other data types such as text, tabular, and others. DTC [14]
has shown that deep clustering methods can easily be transferred to the NCD problem, and we expect
that more of them could be adapted and offer a new source of inspiration. Some procedures have been
proposed to determine the number of unknown classes automatically with varying degrees of success.
Ideally, NCD methods should not make the assumption that this number is known in advance, but
this is most likely not a limiting factor in real-world scenarios. We also believe that it is crucial to
have a unified benchmark and evaluation protocol, since previous works have shown that the split
of known/unknown classes has an influence on the difficulty of the NCD problem [17]. Lastly, the
accuracy of pseudo labeling, which widely used in one-stage frameworks, is a decisive factor to the
success of these methods. There is still room for improvement in this area, for instance, taking labeled
data into account, or taking inspiration from graph theory and spectral clustering.
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[69] V. Lemaire, O. Alaoui Ismaili, and A. Cornuéjols, “An initialization scheme for supervized k-
means,” in International Joint Conference on Neural Networks (IJCNN), IEEE, 2015.

[70] Y. Chen, X. Zhu, W. Li, and S. Gong, “Semi-supervised learning under class distribution mis-
match,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3569–3576,
2020.

[71] A. Oliver, A. Odena, C. A. Raffel, E. D. Cubuk, and I. Goodfellow, “Realistic evaluation of deep
semi-supervised learning algorithms,” Advances in neural information processing systems, vol. 31,
2018.

[72] L.-Z. Guo, Z.-Y. Zhang, Y. Jiang, Y.-F. Li, and Z.-H. Zhou, “Safe deep semi-supervised learning
for unseen-class unlabeled data,” in International Conference on Machine Learning, pp. 3897–
3906, PMLR, 2020.

[73] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical
image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–
255, 2009.

[74] J. Tao and X. Fang, “Toward multi-label sentiment analysis: a transfer learning based approach,”
Journal of Big Data, vol. 7, no. 1, pp. 1–26, 2020.

[75] Y. Zhu, Y. Chen, Z. Lu, S. J. Pan, G.-R. Xue, Y. Yu, and Q. Yang, “Heterogeneous transfer
learning for image classification,” in Twenty-fifth aaai conference on artificial intelligence, 2011.

[76] S. J. Pan, Q. Yang, Y. Zhang, and W. Dai, Transfer Learning in Activity Recognition, p. 307–323.
Cambridge University Press, 2020.

[77] X. Shi, Q. Liu, W. Fan, P. S. Yu, and R. Zhu, “Transfer learning on heterogenous feature spaces via
spectral transformation,” in 2010 IEEE International Conference on Data Mining, pp. 1049–1054,
2010.

[78] C. Wang and S. Mahadevan, “Heterogeneous domain adaptation using manifold alignment,” in
Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Vol-
ume Volume Two, IJCAI’11, p. 1541–1546, AAAI Press, 2011.

[79] W. Dai, Y. Chen, G.-r. Xue, Q. Yang, and Y. Yu, “Translated learning: Transfer learning across
different feature spaces,” in Advances in Neural Information Processing Systems, vol. 21, Curran
Associates, Inc., 2009.

[80] P. Prettenhofer and B. Stein, “Cross-language text classification using structural correspondence
learning,” in Proceedings of the 48th Annual Meeting of the Association for Computational Lin-
guistics, pp. 1118–1127, Association for Computational Linguistics, 2010.

[81] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T. G. Diet-
terich, and K.-R. Müller, “A unifying review of deep and shallow anomaly detection,” Proceedings
of the IEEE, vol. 109, no. 5, pp. 756–795, 2021.

[82] M. Markou and S. Singh, “Novelty detection: a review—part 1: statistical approaches,” Signal
processing, vol. 83, no. 12, pp. 2481–2497, 2003.

[83] L. Shu, H. Xu, and B. Liu, “Unseen class discovery in open-world classification,” ArXiv,
vol. abs/1801.05609, 2018.

[84] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, “Toward open set recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 7, pp. 1757–1772,
2013.

29



[85] K. Alrawashdeh and C. Purdy, “Toward an online anomaly intrusion detection system based on
deep learning,” in 2016 15th IEEE international conference on machine learning and applications
(ICMLA), pp. 195–200, IEEE, 2016.

[86] T. Xiao, C. Zhang, and H. Zha, “Learning to detect anomalies in surveillance video,” IEEE Signal
Processing Letters, vol. 22, no. 9, pp. 1477–1481, 2015.

[87] J. Van den Broeck, S. Argeseanu Cunningham, R. Eeckels, and K. Herbst, “Data cleaning: de-
tecting, diagnosing, and editing data abnormalities,” PLoS medicine, vol. 2, no. 10, p. e267, 2005.

[88] T. T. Dang, H. Y. Ngan, and W. Liu, “Distance-based k-nearest neighbors outlier detection
method in large-scale traffic data,” in 2015 IEEE International Conference on Digital Signal
Processing (DSP), pp. 507–510, IEEE, 2015.

[89] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying density-based local
outliers,” in Proceedings of the 2000 ACM SIGMOD international conference on Management of
data, pp. 93–104, 2000.

[90] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters
in large spatial databases with noise,” in Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD), p. 226–231, AAAI Press, 1996.

30


	Introduction
	Preliminaries
	Taxonomy of Novel Class Discovery methods
	Two-stage methods
	Learned-similarity–based
	Latent-space–based

	One-stage methods
	Introduction
	AutoNovel
	Class Discovery Kernel Network with Expansion (CD-KNet-Exp)
	OpenMix
	Neighborhood Contrastive Learning (NCL)
	Other methods

	Estimating the number of unknown classes
	Methods summary

	New domains derived from Novel Class Discovery
	Tools for Novel Class Discovery
	Self-Supervised Learning
	Pseudo labels
	Contrastive Learning

	Related works
	Unsupervised Clustering
	Semi-Supervised Learning
	Transfer Learning
	Open World Learning

	Conclusion and perspectives

